A Hybrid Genetic Algorithm and Bacterial Foraging Approach for Global Optimization and Robust Tuning of PID Controller with Disturbance Rejection

نویسندگان

  • D. H. Kim
  • A. Abraham
چکیده

The social foraging behavior of Escherichia coli (E. Coli) bacteria has been used to solve optimization problems. This chapter proposes a hybrid approach involving genetic algorithm (GA) and bacterial foraging (BF) algorithm for function optimization problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the lifetime of the bacteria. The proposed algorithm is then used to tune a PID controller of an Automatic Voltage Regulator (AVR). To design disturbance rejection tuning, disturbance rejection conditions based on H∞ are illustrated and the performance of response is computed for the designed PID controller as the integral of time weighted squared error. Simulation results clearly illustrate that the proposed approach is very efficient and could easily be extended for other global optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID...

متن کامل

A Biologically Inspired Intelligent PID Controller Tuning for AVR Systems

This paper proposes a hybrid approach involving Genetic Algorithm (GA) and Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is studied with an emphasis on mutation, crossover...

متن کامل

Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control

This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007